
112+ Elite Coding Project Ideas for Beginners
to Kickstart
Leave a Comment / Computer Science

Find fun and easy coding projects for beginners! Explore simple games, helpful tools, and
cool websites to improve your skills. Start your coding adventure now!

Start coding with simple games, helpful tools, and cool websites. Let’s begin!

Are you new to coding? Do you want to try fun projects? Working on projects is a great
way to learn. But what can you create?

https://allprojectideas.com/category/computer-science/
https://allprojectideas.com/
https://allprojectideas.com/

In this guide, we’ll show easy project ideas for beginners. You can make simple games,
useful tools, or cool websites. Each project is fun and easy, helping you learn more.

These projects will help you practice and give you something to share. Let’s find a fun
project for you to start!

Benefits of Working on Coding Projects
Here are the benefits of working on coding projects:

Benefits of Coding Projects Description

Learn by Doing
You get to practice and understand
coding better.

Solve Problems Projects help you learn how to fix issues.

Show Your Work Finished projects show what you can do.

Be Creative You can use your ideas and creativity.

Learn New Things You discover new coding skills and tools.

Meet People
Sharing projects helps you connect with
others.

Gain Confidence
Completing projects makes you feel
proud.

Table of Contents
1. Benefits of Working on Coding Projects

2. Setting Up Your Environment

3. Coding Project Ideas for Beginners

4. Tips for Coding Projects
5. Resources for Learning and Inspiration

6. Simple Coding Project Ideas for Beginners

7. Coding Project Ideas for Beginners Github

8. Coding Project Ideas for Beginners Step by Step

9. Conclusion

Benefits of Coding Projects Description

Get Real Experience Projects give you practice like a real job.

These benefits make coding projects fun and helpful!

Setting Up Your Environment
Here are the best ways to setting up your environment:

Choose Your Computer

Windows, Mac, or Linux: Use any computer that you have.

Install a Code Editor

Pick a Code Editor: Some popular options are:

Visual Studio Code: Great for many languages.
Sublime Text: Simple and fast.
Atom: Customizable and user-friendly.

Install Programming Languages

Pick a Language: Choose one to start with, like:

Python: Good for beginners.
JavaScript: Great for web development.
Java: Common for many applications.

Download and Install: Visit the official website to download.

Set Up Version Control

Install Git: Git helps you track changes in your code.
Create a GitHub Account: Use GitHub to share your projects.

Test Your Setup

Write a Simple Program: Open your code editor and write a basic program, like printing
“Hello, World!”
Run It: Make sure it works!

Explore Additional Tools

Check for Extensions: Look for helpful tools and extensions in your code editor.
Use Online Resources: Find tutorials or documentation to help you.

Coding Project Ideas for Beginners
Here are some of the best coding project ideas for beginners:

Web Development

Personal Portfolio Website

Description: Showcase your skills, projects, and resume.

Technologies: HTML, CSS, JavaScript.

Features:

Home section with an introduction.
Projects section to display your work.
Contact form for inquiries.

To-Do List App

Description: Manage daily tasks efficiently.

Technologies: HTML, CSS, JavaScript (or React).

Features:

Add, edit, and delete tasks.
Mark tasks as complete.
Local storage to save tasks.

Weather App

Description: Displays weather data based on user input.

Technologies: HTML, CSS, JavaScript, API (like OpenWeatherMap).

Features:

Search functionality for different cities.
Current temperature and conditions display.
5-day weather forecast.

Basic Blog

Description: A platform to publish articles and share thoughts.

Technologies: HTML, CSS, JavaScript (or a CMS like WordPress).

Features:

Post creation and editing.
Comment section for readers.
Categorization of posts.

Quiz App

Description: Test knowledge on various topics.

Technologies: HTML, CSS, JavaScript.

Features:

Multiple-choice questions.
Score tracking and feedback.
Timer for added challenge.

Recipe Book

Description: Share and browse cooking recipes.

Technologies: HTML, CSS, JavaScript.

Features:

Add, edit, and delete recipes.

Search by ingredients or title.
User ratings and comments.

E-commerce Storefront

Description: Basic layout for an online store.

Technologies: HTML, CSS, JavaScript.

Features:

Product listings with images and prices.
Shopping cart functionality.
Checkout process simulation.

Photo Gallery

Description: Display a collection of images.

Technologies: HTML, CSS, JavaScript.

Features:

Responsive grid layout.
Image lightbox for viewing.
Upload feature for new images (optional).

Event Calendar

Description: Show upcoming events and dates.

Technologies: HTML, CSS, JavaScript.

Features:

Monthly view with clickable days.
Add, edit, and delete events.
Notifications for upcoming events.

Markdown Previewer

Description: Convert markdown text to HTML in real-time.

Technologies: HTML, CSS, JavaScript.

Features:

Live preview of markdown input.
Option to download markdown as a file.
Basic markdown syntax support.

Games

Guess the Number

Description: A game where users guess a randomly generated number.

Technologies: HTML, CSS, JavaScript.

Features:

Random number generation within a range.
User input for guesses.
Feedback on whether the guess is too high or low.

Rock, Paper, Scissors

Description: A digital version of the classic hand game.

Technologies: HTML, CSS, JavaScript.

Features:

User vs. computer gameplay.
Score tracking for multiple rounds.
Display of round results.

Tic-Tac-Toe

Description: A two-player board game on a 3×3 grid.

Technologies: HTML, CSS, JavaScript.

Features:

Player turns and winning condition checks.
Reset game functionality.
Simple AI for single-player mode.

Memory Game

Description: Match pairs of cards from a grid.

Technologies: HTML, CSS, JavaScript.

Features:

Flipping cards to reveal.
Tracking pairs matched.
Timer or move counter for challenge.

Snake Game

Description: Control a snake to eat food and grow.

Technologies: HTML, CSS, JavaScript (or Canvas API).

Features:

Keyboard controls for movement.
Score tracking based on food eaten.
Game over condition when hitting walls or itself.

Pong Game

Description: Classic arcade game where players control paddles to hit a ball.

Technologies: HTML, CSS, JavaScript (or Canvas API).

Features:

Two-player or single-player mode.
Score tracking for both players.
Speed increase as the game progresses.

Platformer Game

Description: A side-scrolling game with levels and obstacles.

Technologies: HTML, CSS, JavaScript (or game libraries like Phaser).

Features:

Character movement and jumping.
Collectibles and enemies.
Level progression.

Hangman

Description: A word-guessing game where players guess letters.

Technologies: HTML, CSS, JavaScript.

Features:

Random word selection from a list.
Display of correct and incorrect guesses.
Visual representation of the hangman.

2048 Game

Description: A sliding puzzle game combining numbered tiles.

Technologies: HTML, CSS, JavaScript.

Features:

4×4 grid with tiles that combine when matched.
Score tracking based on tile values.
Game over condition when no moves are le�.

Minesweeper

Description: A grid-based game where players uncover tiles to avoid mines.

Technologies: HTML, CSS, JavaScript.

Features:

Grid setup with randomly placed mines.

Number clues indicating adjacent mines.
Winning condition when all safe tiles are uncovered.

Data and Algorithms

Simple Calculator

Description: A basic calculator for arithmetic operations.

Technologies: HTML, CSS, JavaScript.

Features:

Buttons for digits and operations.
Display for results.
Clear function for resetting input.

Fibonacci Sequence Generator

Description: Generate Fibonacci numbers.

Technologies: Python or JavaScript.

Features:

User input for how many numbers to generate.
Display of the sequence.
Option to visualize the sequence graphically.

Sorting Visualizer

Description: Visualize sorting algorithms like bubble sort and merge sort.

Technologies: HTML, CSS, JavaScript.

Features:

Random array generation for sorting.
Step-by-step visualization of sorting process.
Selection of different algorithms to compare.

Basic Address Book

Description: Store and manage contact information.

Technologies: HTML, CSS, JavaScript.

Features:

Add, edit, and delete contacts.
Search functionality.
Save contacts in local storage.

Text-Based Adventure Game

Description: A game where users make choices in a story.

Technologies: Python or JavaScript.

Features:

Multiple scenarios and endings based on choices.
User input for decisions.
Simple text display for narrative.

Prime Number Checker

Description: Check if a number is prime.

See also 100+ Must-Try MERN Stack Projects for CS Students

Technologies: Python or JavaScript.

Features:

User input for the number.
Display of whether it’s prime or not.
Option to generate a list of prime numbers.

Palindrome Checker

Description: Check if a string is a palindrome.

Technologies: Python or JavaScript.

https://allprojectideas.com/mern-stack-projects/

Features:

User input for the string.
Display of the result.
Option to ignore case and spaces.

Anagram Finder

Description: Check if two words are anagrams.

Technologies: Python or JavaScript.

Features:

User input for two words.
Display of whether they are anagrams.
Example anagrams for practice.

Simple Budget Tracker

Description: Track income and expenses.

Technologies: HTML, CSS, JavaScript.

Features:

Add income and expenses.
Display of total balance.
Visual graphs of spending patterns.

Number Guessing Game

Description: A game to guess a randomly selected number.

Technologies: HTML, CSS, JavaScript.

Features:

User input for guesses.
Feedback on whether the guess is too high or low.
Score tracking based on number of attempts.

Mobile Applications

Flashcard App

Description: Help users learn with flashcards.

Technologies: React Native or Flutter.

Features:

Create and review flashcards.
Quiz mode for testing knowledge.
Categories for different subjects.

Fitness Tracker

Description: Track workouts and health metrics.

Technologies: React Native or Flutter.

Features:

Log exercises and durations.
Set fitness goals.
Visual charts for progress tracking.

Recipe App

Description: Browse and save recipes.

Technologies: React Native or Flutter.

Features:

Search by ingredients or categories.
Save favorite recipes.
Option to create shopping lists.

Habit Tracker

Description: Track and build positive habits.

Technologies: React Native or Flutter.

Features:

Set daily habits to track.
Visual progress graphs.
Reminders for daily check-ins.

Expense Tracker

Description: Monitor personal finances.

Technologies: React Native or Flutter.

Features:

Log expenses and categorize them.
Display monthly spending summaries.
Set budget limits.

Travel Planner

Description: Plan trips and itineraries.

Technologies: React Native or Flutter.

Features:

Create travel itineraries.
Store important travel documents.
Share plans with friends.

Meditation Timer

Description: Timer for meditation sessions.

Technologies: React Native or Flutter.

Features:

Set timer for meditation durations.
Select calming sounds.
Log meditation sessions.

News Reader

Description: Read and bookmark articles.

Technologies: React Native or Flutter.

Features:

Browse articles from different sources.
Bookmark favorite articles.
Search functionality.

Quiz App

Description: Test knowledge with quizzes.

Technologies: React Native or Flutter.

Features:

Multiple categories and topics.
Score tracking and feedback.
Option to create custom quizzes.

Social Media App

Description: Share updates and connect with others.

Technologies: React Native or Flutter.

Features:

User profiles and posts.
Like and comment functionality.
Follow friends and view feeds.

Robotics

Line-Following Robot

Description: Robot that follows a line on the ground.

Components: Microcontroller (Arduino), motors, sensors.

Features:

Use infrared sensors to detect the line.
Program motor responses for turning.
Test with different track layouts.

Obstacle-Avoiding Robot

Description: Robot that navigates around obstacles.

Components: Microcontroller (Arduino), ultrasonic sensors, motors.

Features:

Use ultrasonic sensors for distance measurement.
Program movement patterns to avoid collisions.
Test in a maze or obstacle course.

Remote-Controlled Car

Description: A car controlled via remote.

Components: Microcontroller (Arduino), motors, remote control module.

Features:

Program motor controls for movement.
Design a simple remote interface.
Test range and control responsiveness.

Robotic Arm

Description: A programmable arm for tasks.

Components: Servo motors, microcontroller (Arduino).

Features:

Program movements for picking up objects.
Use sensors for feedback.
Create simple tasks like stacking.

Automated Plant Watering System

Description: Waters plants automatically.

Components: Microcontroller (Arduino), water pump, moisture sensors.

Features:

Monitor soil moisture levels.
Activate pump when moisture is low.
Use a timer for regular watering.

Ball-and-Plate Balancer

Description: Balances a ball on a flat surface.

Components: Microcontroller (Arduino), motors, sensors.

Features:

Use sensors to detect ball position.
Adjust motors to keep the ball centered.
Create challenges for balancing.

Smart Door Lock

Description: Door lock controlled by a microcontroller.

Components: Microcontroller (Arduino), servo motor, keypad.

Features:

Use a keypad for entry.
Program locking/unlocking mechanism.
Test security features.

Maze-Solving Robot

Description: Robot that finds its way through a maze.

Components: Microcontroller (Arduino), motors, sensors.

Features:

Program algorithms to navigate.
Use sensors for wall detection.
Test different maze configurations.

Robot Car with Camera

Description: Car that can stream video.

Components: Microcontroller (Raspberry Pi), camera module.

Features:

Live video streaming.
Remote control for navigation.
Simple obstacle detection.

Gesture-Controlled Robot

Description: Robot that responds to hand gestures.

Components: Microcontroller (Arduino), sensors (like accelerometers).

Features:

Use sensors to detect gestures.
Program robot movements based on gestures.
Test with different gesture commands.

Environmental Projects

Solar-Powered Charger

Description: A charger powered by solar energy.

Components: Solar panels, rechargeable battery, USB output.

Features:

Convert solar energy to electricity.
Design a compact charging unit.
Test with devices like phones.

Water Quality Tester

Description: Test local water sources for quality.

Components: pH sensor, turbidity sensor, microcontroller.

Features:

Measure pH levels and turbidity.
Display results on an LCD screen.
Create a report of local water quality.

Air Quality Monitor

Description: Monitor air pollution levels.

Components: Air quality sensors, microcontroller.

Features:

Measure levels of pollutants (like CO2).
Display results on a screen.
Create a database of local air quality readings.

Rainwater Harvesting System

Description: Collect and use rainwater.

Components: Collection tank, filters, pumps.

Features:

Design a system for capturing rainwater.
Filter and store the water for use.
Analyze water quality periodically.

Compost Bin

Description: Create a compost system for organic waste.

Components: Bin, aeration tools, temperature sensors.

Features:

Monitor temperature and moisture levels.
Design a turning mechanism for aeration.
Educate on the benefits of composting.

Wildlife Habitat Project

Description: Create a habitat for local wildlife.

Components: Natural materials, plants, feeders.

Features:

Design and build a small habitat.
Include plants for food and shelter.
Monitor wildlife activity.

Vertical Garden

Description: Grow plants in a vertical space.

Components: Shelving, pots, soil.

Features:

Design a space-efficient garden.
Use self-watering systems.
Monitor plant growth and health.

Electric Bike Conversion

Description: Convert a regular bike to electric.

Components: Electric motor, battery, controller.

Features:

Design and install the motor system.
Test with different battery capacities.
Monitor range and performance.

Recycling Project

Description: Create a community recycling initiative.

Components: Collection bins, education materials.

Features:

Design a system for recycling collection.
Educate the community on recycling.
Monitor recycling rates.

Sustainable Home Model

Description: Create a model of a sustainable home.

Components: Recycled materials, solar panels, insulation.

Features:

Design energy-efficient features.
Include rainwater collection and gardening.
Present sustainability benefits.

Health and Wellness Projects

Step Tracker

Description: Track daily steps and activity.

Technologies: Mobile app (React Native or Flutter).

Features:

Record daily step counts.
Set goals for daily activity.
Display progress over time.

Meal Planner

Description: Plan healthy meals for the week.

Technologies: Mobile app (React Native or Flutter).

Features:

Create meal plans based on dietary preferences.
Generate shopping lists from meal plans.
Share plans with others.

Mental Health Journal

Description: A digital journal for tracking moods and thoughts.

Technologies: Mobile app (React Native or Flutter).

Features:

Daily entries for mood tracking.
Reflection prompts for mindfulness.
Graphs to visualize mood patterns.

Sleep Tracker

Description: Monitor sleep patterns.

Technologies: Mobile app (React Native or Flutter).

Features:

Log sleep duration and quality.
Set alarms for consistent sleep schedules.
Analyze sleep data for patterns.

Exercise Log

Description: Record and track workouts.

Technologies: Mobile app (React Native or Flutter).

Features:

Log different types of workouts.
Set fitness goals and track progress.
Visualize workout history over time.

Hydration Reminder

Description: Track and remind users to drink water.

Technologies: Mobile app (React Native or Flutter).

Features:

Log daily water intake.
Set reminders for drinking water.
Display hydration goals.

Nutrition Tracker

Description: Log food intake and analyze nutrition.

See also 115+ Vital Golang Project Ideas

Technologies: Mobile app (React Native or Flutter).

Features:

Search for foods and log meals.
Display nutritional information.
Set dietary goals.

Guided Meditation App

Description: Provide guided meditation sessions.

Technologies: Mobile app (React Native or Flutter).

Features:

Audio guides for meditation.
Timer for meditation sessions.
Daily reminders for practice.

Fitness Challenge App

Description: Create and join fitness challenges.

https://allprojectideas.com/golang-project-ideas/

Technologies: Mobile app (React Native or Flutter).

Features:

Set up different fitness challenges.
Track progress and achievements.
Share challenges with friends.

Health Tips App

Description: Share tips and advice for a healthier lifestyle.

Technologies: Mobile app (React Native or Flutter).

Features:

Daily health tips and articles.
Categorized topics for easy browsing.
User-submitted tips and experiences.

Game Development Projects

2D Platformer Game

Description: Create a simple 2D platformer.

Technologies: Unity or Godot.

Features:

Character movement and jumping mechanics.
Level design with obstacles and enemies.
Collectibles for scoring.

Trivia Quiz Game

Description: A quiz game with multiple choice questions.

Technologies: Unity or Godot.

Features:

Multiple categories and difficulty levels.
Timer for each question.
Leaderboard for top scores.

Puzzle Game

Description: A game based on solving puzzles.

Technologies: Unity or Godot.

Features:

Various puzzle types (like jigsaw or match-3).
Increasing difficulty levels.
Hints and power-ups.

Text Adventure Game

Description: A story-driven text adventure.

Technologies: Python or JavaScript.

Features:

Interactive storytelling with choices.
Different endings based on choices.
Inventory system for items.

Memory Game

Description: A game to test memory skills.

Technologies: Unity or Godot.

Features:

Card matching mechanics.
Timer for scoring.
Levels with increasing complexity.

Endless Runner Game

Description: A never-ending running game.

Technologies: Unity or Godot.

Features:

Character running and jumping mechanics.
Obstacles to avoid.
Scoring based on distance traveled.

Virtual Pet Game

Description: A game where you care for a virtual pet.

Technologies: Unity or Godot.

Features:

Feed, play, and take care of the pet.
Levels of happiness and health.
Customization options for pets.

Racing Game

Description: A simple racing game.

Technologies: Unity or Godot.

Features:

Multiple race tracks and vehicles.
AI opponents for competition.
Scoring based on race time.

Educational Game

Description: A game that teaches concepts.

Technologies: Unity or Godot.

Features:

Interactive learning modules.

Quizzes and challenges.
Progress tracking for users.

Escape Room Game

Description: A game where players solve puzzles to escape.

Technologies: Unity or Godot.

Features:

Thematic rooms with unique puzzles.
Time limits for added challenge.
Collaborative gameplay options.

Arts and Crafts Projects

DIY Candle Making

Description: Create custom candles.

Materials: Wax, wicks, molds, scents.

Features:

Experiment with colors and scents.
Design unique molds.
Learn about candle safety.

Tie-Dye T-Shirts

Description: Create colorful tie-dye shirts.

Materials: Plain shirts, dye, rubber bands.

Features:

Experiment with different patterns.
Use natural dyes for eco-friendliness.
Host a tie-dye party.

Handmade Greeting Cards

Description: Create custom cards for occasions.

Materials: Cardstock, markers, stickers.

Features:

Design themes for different occasions.
Use various art techniques.
Create a collection for events.

Jewelry Making

Description: Create unique jewelry pieces.

Materials: Beads, wires, tools.

Features:

Experiment with different materials.
Design necklaces, bracelets, and earrings.
Host a jewelry-making workshop.

Paper Mache Crafts

Description: Create sculptures using paper mache.

Materials: Paper, glue, balloons.

Features:

Design unique shapes and figures.
Paint and decorate the finished pieces.
Explore different cra�ing techniques.

Paint Pouring Art

Description: Create abstract art using paint pouring.

Materials: Acrylic paints, canvases.

Features:

Experiment with different pouring techniques.

Use various color combinations.
Display finished pieces at home.

Scrapbooking

Description: Create personalized scrapbooks.

Materials: Photos, papers, embellishments.

Features:

Design pages with themes.
Use different layouts and styles.
Document memories creatively.

DIY Home Decor

Description: Create decorative items for home.

Materials: Recycled materials, paints, fabric.

Features:

Design wall art and decor pieces.
Use upcycled materials creatively.
Host a decor-making event.

Natural Dyes for Fabrics

Description: Dye fabrics using natural materials.

Materials: Plants, fruits, fabrics.

Features:

Experiment with different dye sources.
Create eco-friendly fabrics.
Document the dyeing process.

Pottery

Description: Create pottery pieces by hand.

Materials: Clay, pottery tools, kiln.

Features:

Learn basic pottery techniques.
Design and glaze finished pieces.
Host pottery classes or workshops.

Community Service Projects

Neighborhood Clean-Up

Description: Organize a clean-up day in the community.

Activities:

Gather volunteers and supplies.
Choose locations for cleaning.
Provide refreshments for participants.

Food Drive

Description: Collect food for local shelters.

Activities:

Set up collection bins in the community.
Partner with local businesses for support.
Distribute food to those in need.

Tutoring Program

Description: Offer tutoring for students.

Activities:

Recruit volunteers for different subjects.
Organize sessions in community centers.
Promote the program in local schools.

Fundraising for Charity

Description: Raise funds for a chosen charity.

Activities:

Plan events like bake sales or fun runs.
Use social media for awareness.
Set a fundraising goal and track progress.

Clothing Swap

Description: Organize a clothing exchange event.

Activities:

Collect gently used clothes from community members.
Set up an event for swapping items.
Promote sustainable fashion practices.

Park Restoration

Description: Help restore local parks.

Activities:

Identify areas needing maintenance.
Organize planting and clean-up days.
Collaborate with local organizations.

Book Donation Drive

Description: Collect books for schools or libraries.

Activities:

Set up collection points in the community.
Partner with schools to distribute books.
Organize a book fair event.

Senior Assistance Program

Description: Offer help to seniors in the community.

Activities:

Provide companionship and support.
Organize grocery shopping or yard work.
Host events for socializing.

Animal Shelter Volunteer Day

Description: Volunteer at a local animal shelter.

Activities:

Help care for animals and maintain facilities.
Organize adoption events.
Promote awareness about pet adoption.

Environmental Awareness Campaign

Description: Educate the community about environmental issues.

Activities:

Organize workshops and events.
Create informative materials.
Partner with local organizations for outreach.

Tips for Coding Projects
Here are one-liner tips for coding projects:

Tip Description

Start Small Pick easy projects to build confidence.

Plan Your Project
Write down your goals and break tasks
into smaller steps.

Keep Learning
Use online resources and tutorials for
help.

Tip Description

Ask Questions
Join coding groups for support and
advice.

Write Clean Code
Use clear names and comments to make
your code easy to read.

Test O�en
Run your code regularly to find and fix
errors early.

Fix Problems
Don’t be afraid to change or update your
code.

Share Your Work
Show your projects to friends or on
GitHub.

Get Feedback
Listen to suggestions to improve your
code.

Be Patient
Take breaks if you feel stuck and don’t
rush.

Have Fun Work on projects that you enjoy!

Resources for Learning and Inspiration
Here are simple one-liner resources for learning and inspiration in coding:

Resource Description

Codecademy
Learn coding basics with interactive
lessons.

freeCodeCamp
Get free coding lessons and practice
projects.

Khan Academy Access beginner programming courses.

Resource Description

Coursera Take online courses from top schools.

YouTube Watch video tutorials on coding topics.

W3Schools Find easy web development tutorials.

GitHub
Explore projects and share your own
code.

Stack Overflow Ask coding questions and find answers.

Reddit
Join r/learnprogramming for help and
tips.

Books
Read beginner books like “Python Crash
Course.”

Blogs Follow coding blogs for tips and ideas.

These resources will help you learn and get inspired!

Simple Coding Project Ideas for Beginners
Here are very simple coding project ideas for beginners:

Project Description

Hello World Make a program that says “Hello, World!”

Calculator Create a basic calculator.

To-Do List Build a list to add and check off tasks.

Guess the Number Make a game for guessing a number.

Portfolio Website Create a site to show your projects.

Quiz Game Make a quiz with questions and a score.

Project Description

Weather App Show the current weather using an API.

Countdown Timer Create a timer that counts down.

Text Adventure Game Make a game with choices for players.

Recipe App Save and show your favorite recipes.

These projects are fun and easy!

See also 111+ Innovative Scratch Project Ideas For Students

Coding Project Ideas for Beginners Github
Here are very simple coding project ideas for beginners to put on GitHub:

Personal Portfolio Website

Make a website to show your projects and skills. Use HTML, CSS, and JavaScript.
View a template here.

To-Do List App

Create an app where users can add and remove tasks. This is a great way to learn
JavaScript.
Check this example.

Weather App

Build an app that shows the weather for any location using an API.
See how to create it.

Simple Game (Tic-Tac-Toe)

Make a basic game like Tic-Tac-Toe with HTML and JavaScript.
Look at this game example.

https://allprojectideas.com/scratch-project-ideas/
https://github.com/TimothyKatz/portfolio
https://github.com/tastejs/todomvc
https://github.com/Pratikm123/weather-app
https://github.com/AnkitDholakia/tic-tac-toe

Blog Platform

Create a simple blog where users can write and edit posts.
Check out this blog project.

Expense Tracker

Design an app to help people track their spending and see where their money goes.
View this tracker example.

Recipe Finder App

Build an app that helps users search for recipes by ingredients.
See a recipe finder here.

Chat Application

Create a chat app for real-time messaging.
Check this chat app.

Markdown Previewer

Make a tool that shows a live preview of Markdown text.
Learn to create this previewer.

Fitness Tracker

Design an app for logging workouts and meals.
See a fitness tracker example.

These projects are easy and fun to share on GitHub!

Coding Project Ideas for Beginners Step by
Step
Here are some of the best coding project ideas for beginners step-by-step:

Simple Calculator

https://github.com/mohitprajapati/blog
https://github.com/nashatashraf/expense-tracker
https://github.com/nikhilshah07/recipe-finder
https://github.com/sushantmohanty/chat-app
https://github.com/rajeshrrw/markdown-previewer
https://github.com/simonw/fitness-tracker

Step 1: Choose Python.
Step 2: Set up a console interface.
Step 3: Create functions for basic operations.
Step 4: Get user input.
Step 5: Display the result.

Step 3: Define functions for operations
def add(x, y):
 return x + y

def subtract(x, y):
 return x - y

def multiply(x, y):
 return x * y

def divide(x, y):
 return x / y

Step 2: Get user input
print("Select operation:")
print("1. Add")
print("2. Subtract")
print("3. Multiply")
print("4. Divide")

choice = input("Enter choice (1/2/3/4): ")

num1 = float(input("Enter first number: "))
num2 = float(input("Enter second number: "))

Step 5: Calculate and display result
if choice == '1':
 print(f"{num1} + {num2} = {add(num1, num2)}")
elif choice == '2':
 print(f"{num1} - {num2} = {subtract(num1, num2)}")
elif choice == '3':
 print(f"{num1} * {num2} = {multiply(num1, num2)}")
elif choice == '4':
 print(f"{num1} / {num2} = {divide(num1, num2)}")

To-Do List App

Step 1: Choose JavaScript for a web app.
Step 2: Create an HTML interface.
Step 3: Use JavaScript to handle tasks.
Step 4: Store tasks in an array.
Step 5: Display tasks dynamically.

else:
 print("Invalid input")

<!-- Step 2: Basic HTML structure -->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.
 <title>To-Do List</title>
</head>
<body>
 <h1>My To-Do List</h1>
 <input type="text" id="taskInput" placeholder="Add a new task...">
 <button onclick="addTask()">Add</button>
 <ul id="taskList">

 <script>
 let tasks = []; // Step 4: Array to store tasks

 // Step 3: Function to add tasks
 function addTask() {
 const taskInput = document.getElementById("taskInput");
 const task = taskInput.value;

 if (task) {
 tasks.push(task);
 taskInput.value = "";
 displayTasks();
 }
 }

 // Step 5: Function to display tasks
 function displayTasks() {

Guess the Number Game

Step 1: Choose Python.
Step 2: Generate a random number.
Step 3: Ask for user input.
Step 4: Provide feedback.
Step 5: Keep track of attempts.

 const taskList = document.getElementById("taskList");
 taskList.innerHTML = "";

 tasks.forEach((task, index) => {
 const li = document.createElement("li");
 li.textContent = task;
 taskList.appendChild(li);
 });
 }
 </script>
</body>
</html>

import random # Step 1: Import random module

Step 2: Generate a random number
number_to_guess = random.randint(1, 100)
attempts = 0

Step 3: Ask for user input
while True:
 guess = int(input("Guess the number (1-100): "))
 attempts += 1

 # Step 4: Provide feedback
 if guess < number_to_guess:
 print("Too low!")
 elif guess > number_to_guess:
 print("Too high!")
 else:
 print(f"Congratulations! You guessed it in {attempts} attempts.
 break # Step 5: End game on correct guess

Basic Personal Website

Step 1: Learn HTML and CSS basics.
Step 2: Create a simple HTML page.
Step 3: Add sections for information.
Step 4: Style with CSS.
Step 5: Publish online.

<!-- Step 2: Basic HTML structure -->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.
 <title>My Personal Website</title>
 <style>
 body { font-family: Arial, sans-serif; }
 h1 { color: blue; }
 section { margin: 20px 0; }
 </style> <!-- Step 4: Basic CSS styling -->
</head>
<body>
 <h1>Welcome to My Website</h1>
 <section>
 <h2>About Me</h2>
 <p>This is a brief bio about myself.</p>
 </section>
 <section>
 <h2>Hobbies</h2>

 Reading
 Coding
 Traveling

 </section>
 <section>
 <h2>Contact</h2>
 <p>Email: myemail@example.com</p>
 </section>

Weather App

Step 1: Choose JavaScript.
Step 2: Use an API (like OpenWeather).
Step 3: Set up an HTML form.
Step 4: Display weather info.
Step 5: Style the app with CSS.

</body>
</html>

<!-- Step 2: Basic HTML structure -->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.
 <title>Weather App</title>
 <style>
 body { font-family: Arial, sans-serif; }
 #weather { margin-top: 20px; }
 </style>
</head>
<body>
 <h1>Weather App</h1>
 <input type="text" id="cityInput" placeholder="Enter city">
 <button onclick="getWeather()">Get Weather</button>
 <div id="weather"></div>

 <script>
 async function getWeather() { // Step 4: Fetch weather data
 const city = document.getElementById("cityInput").value;
 const apiKey = 'YOUR_API_KEY'; // Replace with your API key
 const response = await fetch(`https://api.openweathermap.or
 const data = await response.json();

 // Step 5: Display the weather info
 if (data.main) {
 document.getElementById("weather").innerHTML = `
 <h2>Weather in ${data.name}</h2>
 <p>Temperature: ${data.main.temp} °C</p>

Flashcard Quiz App

Step 1: Choose JavaScript.
Step 2: Create an array of questions.
Step 3: Display one question at a time.
Step 4: Get user input and provide feedback.
Step 5: Show results at the end.

 <p>Weather: ${data.weather[0].description}</p>
 `;
 } else {
 document.getElementById("weather").innerHTML = `<p>City
 }
 }
 </script>
</body>
</html>

<!-- Step 2: Basic HTML structure -->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.
 <title>Flashcard Quiz App</title>
</head>
<body>
 <h1>Flashcard Quiz</h1>
 <div id="quiz"></div>
 <input type="text" id="answer" placeholder="Your answer">
 <button onclick="submitAnswer()">Submit</button>
 <div id="feedback"></div>

 <script>
 const questions = [
 { question: "What is the capital of France?", answer: "Pari
 { question: "What is 2 + 2?", answer: "4" }
]; // Step 2: Array of questions
 let currentQuestion = 0;

 // Step 3: Display the first question

Basic Blog

Step 1: Choose a simple HTML structure.
Step 2: Create sections for posts.
Step 3: Style using CSS.
Step 4: Add sample blog posts.
Step 5: Make it responsive.

 function displayQuestion() {
 document.getElementById("quiz").innerText = questions[curre
 document.getElementById("feedback").innerText = "";
 }
 displayQuestion();

 // Step 4: Check the answer
 function submitAnswer() {
 const userAnswer = document.getElementById("answer").value;
 if (userAnswer.toLowerCase() === questions[currentQuestion]
 document.getElementById("feedback").innerText = "Correc
 } else {
 document.getElementById("feedback").innerText = "Wrong
 }
 currentQuestion++;
 if (currentQuestion < questions.length) {
 displayQuestion();
 } else {
 document.getElementById("quiz").innerText = "Quiz compl
 document.getElementById("answer").style.display = "none
 }
 }
 </script>
</body>
</html>

htmlCopy code<!-- Step 1: Basic HTML structure -->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.
 <title>My Blog</title>

These projects provide a great way for beginners to practice coding while also seeing
their ideas come to life! Let me know if you need further assistance or details!

Conclusion
Starting coding projects as a beginner is a fun way to learn and practice your skills. The
projects we covered, like making a simple calculator or a to-do list app, help you
understand important concepts while giving you hands-on experience.

By working on small projects, you can build your confidence and gradually try more
challenging ones. The most important thing is to keep practicing and experimenting. So,
jump into these projects, enjoy the process, and let your creativity shine as you learn to
code!

Next Post →

 <style>
 body { font-family: Arial, sans-serif; }
 article { margin: 20px 0; border: 1px solid #ccc; padding: 10px
 </style>
</head>
<body>
 <h1>My Blog</h1>

 <!-- Step 4: Sample blog post -->
 <article>
 <h2>First Post</h2>
 <p>This is my first blog post!</p>
 </article>
 <article>
 <h2>Second Post</h2>
 <p>This is my second blog post!</p>
 </article>

 <!-- Step 5: Make it responsive -->
</body>
</html>

← Previous Post

https://allprojectideas.com/eagle-scout-project-ideas/
https://allprojectideas.com/science-experiments-for-kids/

Related Posts

Leave a Comment
Your email address will not be published. Required fields are marked *

 Save my name, email, and website in
this browser for the next time I comment.

99+ Best & Trending Azure
Project Ideas for CS Students
Leave a Comment / Computer Science / By Adam
Tesla

169+ reMarkable Solidworks
Project Ideas for Engineering
Students
Leave a Comment / Computer Science / By Adam
Tesla

Type here..

Name*

https://allprojectideas.com/azure-project-ideas/
https://allprojectideas.com/azure-project-ideas/
https://allprojectideas.com/azure-project-ideas/#respond
https://allprojectideas.com/category/computer-science/
https://allprojectideas.com/writer/adam-tesla/
https://allprojectideas.com/writer/adam-tesla/
https://allprojectideas.com/azure-project-ideas/
https://allprojectideas.com/azure-project-ideas/
https://allprojectideas.com/solidworks-project-ideas/
https://allprojectideas.com/solidworks-project-ideas/
https://allprojectideas.com/solidworks-project-ideas/
https://allprojectideas.com/solidworks-project-ideas/#respond
https://allprojectideas.com/category/computer-science/
https://allprojectideas.com/writer/adam-tesla/
https://allprojectideas.com/writer/adam-tesla/
https://allprojectideas.com/solidworks-project-ideas/
https://allprojectideas.com/solidworks-project-ideas/

Post Comment »

Recent Posts
181+ Fun and Creative Hydrology Projects for Students

191+ Creative Simple Slope Project Ideas for Students

161+ Easy and Engaging Science Projects for Class 7

151+ Fun & Engaging Science Project Ideas for Kids

189+ Engaging Turkey Project Ideas for Student Learning

Categories
Computer Science

General

Humanities

Mini

Email*

Website

Email address

Subscribe

Subscribe to Our Newsletter
Subscribe us for lastest project ideas on all subjects into your email.

https://allprojectideas.com/hydrology-projects-for-students/
https://allprojectideas.com/simple-slope-project-ideas/
https://allprojectideas.com/science-projects-for-class-7/
https://allprojectideas.com/science-project-ideas-for-kids/
https://allprojectideas.com/turkey-project-ideas/
https://allprojectideas.com/category/computer-science/
https://allprojectideas.com/category/general/
https://allprojectideas.com/category/humanities/
https://allprojectideas.com/category/mini/

Top Pages

Privacy Policy

Disclaimer

Terms And Conditions

Top
Categories

Computer Science

General

Humanities

Mini

Follow us
on

Copyright © 2024 All Project Ideas All Rights Reserved

https://allprojectideas.com/privacy-policy/
https://allprojectideas.com/disclaimer/
https://allprojectideas.com/terms-and-conditions/
https://allprojectideas.com/category/computer-science/
https://allprojectideas.com/category/general/
https://allprojectideas.com/category/humanities/
https://allprojectideas.com/category/mini/
https://www.facebook.com/allprojectideas/

